

Soluções para Condições Extremas

Molas a Gás Nitrogênio Resistentes a Altas Temperaturas

Opções de Temperatura Ampliadas

A DADCO oferece uma seleção de Molas a Gás Nitrogênio com componentes resistentes a altas temperatura para aplicações em que as temperaturas excederão a temperatura operacional padrão. O modelo H1 é adequado para aplicações de até 110°C (230°F), enquanto o modelo H2 permite aplicações de até 200°C. (392°F). Outras molas a gás podem ser encomendadas como H1 ou H2; entre em contato com a DADCO para obter assistência na avaliação dos requisitos específicos de sua aplicação.

77 54 712, 5114 5	Modelo de Alta	H1		H2	
	Temperatura Pressão Máxima de Carga:	135 bar 1950 psi		110 bar 1600 psi	
	Temperatura de Operação:	20°C 68° <i>F</i>	110°C 230°F	20°C 68°F	200°C 392°F
Modelo	Área da Haste cm² in²	Força Fria daN Ibf	Força na Temperatura Máxima daN /bf	Força Fria daN Ibf	Força na Temperatura Máxima daN lbf
C.045	0.28 0.044	38.2 85	49.9 112	31.1 <i>70</i>	50.2 113
C.070	0.38 0.060	52.0 116	67.9 152	42.3 95	68.3 154
C.090	0.50 0.078	67.9 <i>152</i>	88.7 199	55.3 125	89.3 201
C.180	1.13 0.175	153 342	200 447	124 280	201 452
C.250	1.77 0.274	239 534	312 698	194 438	314 706
U.0175	0.95 0.147	128 287	168 375	105 236	169 380
U.0325	1.77 0.274	239 534	312 698	194 438	314 706
U.0400	1.99 0.308	268 600	350 784	218 492	353 794
U.0600	3.14 0.487	424 950	554 1241	346 779	558 1254
U.0800	4.91 0.761	663 1484	866 1939	540 1217	872 1960
U.1200	7.07 1.096	954 2136	1247 2793	778 1753	1255 2821
L.300	1.99 0.308	268 600	350 784	218 <i>4</i> 92	353 794
L.500	3.14 0.487	424 950	554 1241	346 779	558 1254
L.750	4.91 0.761	663 1484	866 1939	540 1217	872 1960
90.10.00500	3.14 0.487	424 950	554 1241	346 779	558 1254
90.10.00750	4.91 0.761	663 1484	866 1939	540 1217	872 1960
90.10.01500	10.18 1.578	1374 3077	1796 4022	1120 2524	1808 4065
90.10.03000	19.63 3.043	2651 5935	3465 7758	2160 4869	3487 7839
U/UX.1600	10.18 1.578	1374 3077	1796 4022	1120 2524	1808 4065
U/UX.2600	15.90 2.465	2147 4807	2807 6284	1749 3944	2824 6348
U/UX.4600	28.27 4.383	3817 8546	4990 11171	3110 7012	5021 11287

Rótulos Indicadores de Temperatura

Os rótulos sensíveis ao calor da DADCO fornecem uma indicação de que a temperatura máxima foi atingida quando o círculo fica cinza. As etiquetas não são reutilizáveis e os círculos não voltam a clarear quando a temperatura diminui.

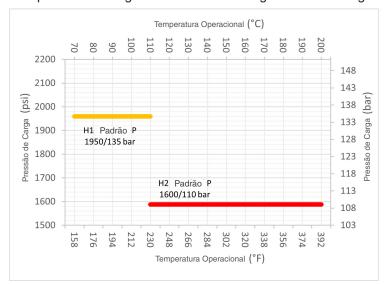
Exemplo de Pedido:

U.0325. H1. 025. TO.

Modelo -

Opção Alta Temperatura: H1 ou H2

Curso: Consulte as opções de cada série


Pressão: H1: 15-135max (220-1950psi). H2: 15-110max (220-1600psi). Consulte a página 3 para obter o cálculo personalizado da pressão.

Opção de Montagem: TO = Modelo Básico.

Quando não especificado, o padrão éTO.

Opções de Temperatura Ampliadas

A pressão de carga para as molas a gás nitrogênio de alta temperatura H1/H2 da DADCO deve ser reduzida da faixa normal de pressão de carga devido ao aumento da temperatura de operação. A pressão inicial na mola a gás aumentará para uma pressão maior com o aumento da temperatura de operação; portanto, a mesma força inicial será obtida com uma pressão de carga menor. As molas a gás H1/H2 interligadas requerem mangueiras e conexões de alta temperatura.

O gráfico mostra a pressão de carga mais alta para cada tipo de mola. É preferível usar pressões de carga mais baixas.

Cálculo da Pressão de Carga

Nos casos em que as pressões de carga recomendadas ou máximas não forem adequadas para sua aplicação, você poderá usar as informações abaixo para determinar a pressão de carga necessária e a força resultante para sua aplicação.

P1 = Pressão, F1 = Força de Carga (min),

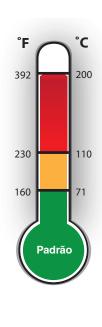
 $F2 = Força Operacional em T_{op}$

A = Área da haste da mola a gás, (consulte a tabela na página 2),

 T_{RM} = Temperatura Ambiente, T_{OP} = Temperatura Operacional

Pressão de Carga com base na Força Inicial:

psi	$P1 = (F2 / A) \times [(T_{RM} + 460) / (T_{OP} + 460)]$	
ры	onde P1 = psi, $\mathbf{A} = \text{in}^2$, $\mathbf{T} = {}^{\circ}\mathbf{F}$	
bar	P1 = (F2 / A) $\times [(\mathbf{T}_{RM} + 273) / (\mathbf{T}_{OP} + 273)]$	
Dai	onde $P1 = bar$, $A = cm^2$, $T = {}^{\circ}C$	


Força Inicial na Temperatura Operacional:

lbf	F2 = P1 x A x [(T_{OP} + 460) / (T_{RM} + 460)] onde P1 = psi, A = in ² , T = °F
daN	F2 = P1 x A x [(T_{OP} + 273) / (T_{RM} + 273)] onde P1 = bar, A = cm ² , T = °C

Força Inicial em Temperatura Ambiente:

lbf	F1 = P1 x A onde P1 = psi, A = in ²
daN	F1 = P1 x A onde P1 = bar, A = cm ²

Tempe	20° C		
°F	°C	Força TX	
392	200	1.61	
374	190	1.58	
356	180	1.55	
338	170	1.51	
320	160	1.48	
302	150	1.44	
284	140	1.41	
266	130	1.38	
248	120	1.34	
230	110	1.31	
212	100	1.27	
194	90	1.24	
176	80	1.20	
158	70	1.17	
140	60	1.14	
122	50	1.10	
104	40	1.07	
86	30	1.03	
68	20	1.00	

TX = multiplicador de força e pressão quando a temperatura do cilindro aumenta a partir de $T_{RM} = 20^{\circ} \text{ C } (68^{\circ} \text{ F}).$

Exemplo F2 = F1 * TX ou TX = P2/P1, onde P2 = pressão em

T_{OP} Exemplos de Aplicações

Opção H1:

C.090.H1.050 requer 190 lbf de força inicial e será instalado em uma aplicação com temperatura operacional de 230° F.

Usando a equação dada, o C.090.H1.050 precisará ser encomendado com uma pressão de carga de 1871 psi.

 $P1 = (F2 / A) \times [530 / (T_{OP} + 460)]$

 $P1 = (190 / .078) \times [530 / (230 + 460)]$

P1 = 1871 psi

Exemplo de Pedido: C.090.H1.050.TO.BK.1871

Opção H2:

U.1200.H2.050 requer 1700 lbf de força inicial e será instalado em uma operação com temperatura operacional de 300° F.

Usando a equação dada, o U.1200.H2.050 precisará ser encomendado com uma pressão de carga de 1081 psi.

 $P1 = (F2 / A) \times [530 / (T_{OP} + 460)]$

 $P1 = (1700 / 1.096) \times [530 / (300 + 460)]$

P1 = 1081 psi

Exemplo de Pedido: U.1200.H2.050.TO.1081

Outros Produtos DADCO

Micro - C Series

- Cinco Modelos: Micro 45[®], Micro 70[®], Micro 90[®], Micro 180[®] e Micro 250[®]
- Forças identificadas por cores de 50 daN a 313 daN
- Uma gama completa de comprimentos de curso padrão até 200 mm
- Ideal para substituição de molas helicoidais

Ultra Force® - Série U

- 19 mm a 195 mm de diâmetro
- Forças de até 199 kN
- Uma gama completa de comprimentos de curso padrão até 125 mm
- UltraPak® cartucho para uma vida longa

ISO / Série 90.10

- 32 mm a 195 mm de diâmetro
- Forças de até 100 kN
- Uma gama completa de comprimentos de curso padrão até 300 mm
- Flanges parafusadas ou soldadas disponíveis
- Normas ISO

Mini - Série L / LJ

- Diâmetros de 38 mm, 45 mm e 50 mm
- Modelos de Força: 3 kN, 5 kN, 7.5 kN
- Uma gama completa de comprimentos de curso padrão até 125 mm
- Entrada M6 comum para operação interligada

Série UH

- 32 mm a 120 mm de diâmetro
- Forças de até 66 kN
- Uma gama completa de comprimentos de curso padrão até 125 mm
- Entrada G 1/8 comum para operação interligada

Ultra Force Extended® – Série UX

- 25-55 % mais força no contato de ISO Padrão Molas a Gás Nitrogênio
- 50 mm a 195 mm de diâmetro
- Forças de até 199 kN
- Uma gama completa de comprimentos de curso padrão até 200 mm
- Flanges parafusadas ou soldadas disponíveis

43850 Plymouth Oaks Blvd. • Plymouth, Michigan • 48170 • USA 734.207.1100 • 1.800.DADCO.USA • fax 734.207.2222 • www.dadco.net

Líder Mundial em Tecnologia de Molas a Gás Nitrogênio